+7(996)961-96-66
+7(964)869-96-66
+7(996)961-96-66
Заказать помощь

Реферат на тему Химические процессы. Реакционная способность веществ

ОПИСАНИЕ РАБОТЫ:

Предмет:
КОНЦЕПЦИИ СОВРЕМЕННОГО ЕСТЕСТВОЗНАНИЯ (КСЕ)
Тема:
Химические процессы. Реакционная способность веществ
Тип:
Реферат
Объем:
19 с.
Дата:
18.12.08
Идентификатор:
idr_1909__0004897
ЦЕНА:
285 руб.

228
руб.
Внимание!!!
Ниже представлен фрагмент данной работы для ознакомления.
Вы можете купить данную работу прямо сейчас!
Просто нажмите кнопку "Купить" справа.

Оплата онлайн возможна с Яндекс.Кошелька, с банковской карты или со счета мобильного телефона (выберите, пожалуйста).
ЕСЛИ такие варианты Вам не удобны - Отправьте нам запрос данной работы, указав свой электронный адрес.
Мы оперативно ответим и предложим Вам более 20 способов оплаты.
Все подробности можно будет обсудить по электронной почте, или в Viber, WhatsApp и т.п.
 

Химические процессы. Реакционная способность веществ - работа из нашего списка "ГОТОВЫЕ РАБОТЫ". Мы помогли с ее выполнением и она была сдана на Отлично! Работа абсолютно эксклюзивная, нигде в Интернете не засвечена и Вашим преподавателям точно не знакома! Если Вы ищете уникальную, грамотно выполненную курсовую работу, реферат, реферат и т.п. - Вы можете получить их на нашем ресурсе.
Вы можете заказать реферат Химические процессы. Реакционная способность веществ у нас, написав на адрес ready@referatshop.ru.
Обращаем ваше внимание на то, что скачать реферат Химические процессы. Реакционная способность веществ по предмету КОНЦЕПЦИИ СОВРЕМЕННОГО ЕСТЕСТВОЗНАНИЯ (КСЕ) с сайта нельзя! Здесь представлено лишь несколько первых страниц и содержание этой эксклюзивной работы - для ознакомления. Если Вы хотите получить реферат Химические процессы. Реакционная способность веществ (предмет - КОНЦЕПЦИИ СОВРЕМЕННОГО ЕСТЕСТВОЗНАНИЯ (КСЕ)) - пишите.

Фрагмент работы:





Содержание


Введение 3
1. Химические процессы 4
1.1. Сущность химического процесса 5
1.2. Принципы управления химическим процессом 8
2. Реакционная способность вещества 12
Заключение 16
Список используемой литературы 19


Введение

В данной работе рассматривается тема "Химические процессы, реакционная способность веществ".
Химические процессы представляют собой сложнейшее явление как в неживой, так и в живой природе. Эти процессы изучают химия, физика и биология. Перед химической наукой стоит принципиальная задача - научиться управлять химическими процессами. Дело в том, что некоторые процессы не удается осуществить, хотя в принципе они осуществимы, другие трудно остановить - реакции горения, взрывы, а часть из них трудноуправляема, поскольку они самопроизвольно создают массу побочных продуктов. Для управления химическими процессами разработаны термодинамический и кинетический методы.
Все химические реакции имеют свойство обратимости, происходит перераспределение химических связей. Обратимость удерживает равновесие между прямой и обратной реакциями. В действительности равновесие зависит от условий прохождения процесса и чистоты реагентов. Смещение равновесия в ту или другую стороны требует специальных способов управления реакциями. Например, реакция получения аммиака:
N2 + 3Н2 D Н3.
Эта реакция проста по составу Элементов и своей структуре. Однако на протяжении целого столетия с 1813 по 1913 гг. химики не могли ее провести в законченном виде, так как не были известны средства управления ею. Она была осуществима только после открытия соответствующих законов нидерландским и французским физико-химиками Я.Х. Вант-Гофом и АЛ. Ле-Шателье. Было установлено, что "синтез аммиака происходит на поверхности твердого катализатора при сдвиге равновесия за счет высоких давлений".
Все проблемы, связанные с такими сложными процессами, как, например, получение аммиака, решает химическая кинетика. Она устанавливает зависимость химических реакций от различных факторов - от строения и концентрации реагентов, наличия катализаторов, от материала и конструкции реакторов и т.д.
Цель работы - выявить сущность химических процессов и реакционной способности веществ.
Задачи исследования вытекают из поставленной цели:
- дать понятие и рассмотреть особенности химических процессов;
- проанализировать реакционную способность вещества.
Характер любой системы, как известно, зависит не только от состава и строения ее элементов, но и от их взаимодействия. Именно такое взаимодействие определяет специфические, целостные свойства самой системы. Поэтому при исследовании разнообразных веществ и их реакционной способности ученым приходилось заниматься и изучением их структур. Соответственно уровню достигнутых знаний менялись и представления о химической структуре веществ. Хотя разные ученые по-разному истолковывали характер взаимодействия между элементами химических систем, тем не менее все они подчеркивали, что целостные свойства этих систем определяются именно специфическими особенностями взаимодействия между их элементами.
Постепенно химики открывали все новые и новые химические элементы, описывали их свойства и реакционную способность и благодаря этому накопили огромный эмпирический материал, который необходимо было привести в определенную систему. Такие системы предлагались разными учеными, но были весьма несовершенными потому, что в качестве системообразующего фактора брались несущественные, второстепенные и даже чисто внешние признаки элементов.
Рассмотрим подробнее химические процессы и реакционную способность веществ.

1. Химические процессы

1.1. Сущность химического процесса

Учение о химическом процессе характеризуется взаимодействием физики, химии и биологии и базируется на идеях химической термодинамики и кинетики, которые обычно рассматриваются в физической химии.
Химический процесс всегда был в центре внимания химиков. Однако понимание его сущности стало возможным лишь в конце XIX в., а современное представление о том, что такое химический процесс, сложилось в 1950-х гг.
Условия среды на Земле таковы, что молекулы непрерывно разрушаются и снова образуются. Если бы температура Земли была значительно выше, например как температура поверхности Солнца, то многие молекулы никогда бы не образовались из-за слишком сильного теплового возбуждения (атомы не могли бы оставаться друг возле друга), а если бы температура Земли была гораздо ниже, молекулы, соединяясь, образовали бы твердые тела и кристаллы и никакие изменения не происходили. Температура на Земле такова, что энергии достаточно для разрушения некоторых молекул, однако количество энергии не слишком велико, благодаря чему большинство соединений может существовать в течение какого-то времени. Создание и разрушение молекул сообщают постоянные изменения окружающей среде и создают тем самым возможность жизни.
Одно из важнейших следствий образования молекул состоит в высвобождении энергии. Этот процесс особенно нагляден при сжигании угля или других веществ. Горение любого типа связано с образованием новых молекул и, следовательно, с выделением тепловой энергии. Рассмотрим подробнее, как и почему высвобождается энергия при соединении атомов в молекулы. Понятно, что для разрыва химической связи требуется некоторое количество энергии и такое же ее количество высвобождается при образовании связи. Таким образом, нужно затратить энергию, чтобы разделить молекулу на атомы, и энергия выделяется, когда атомы образуют молекулу. Эта энергия проявляется в различных формах, например в виде колебаний. Когда атомы соединяются, образующаяся молекула начинает колебаться в результате сильного столкновения атомов. Вообще, когда атомы образуют молекулу, энергия высвобождается и обычно проявляется в форме движения, что эквивалентно теплоте. В некоторых особых случаях энергия связи не превращается в теплоту: химические реакции присоединения происходят таким образом, что энергия, выигранная при образовании молекул, передается молекулам другого рода, т.е. энергия образования молекулы запасается в другой молекуле, а не растрачивается в виде теплоты. Этот случай важен для поддержания жизни.
Обратимся к такому хорошо известному химическому процессу, как процесс горения угля. Углерод угля и кислород воздуха образуют углекислый газ - диоксид углерода. Кусок угля - это совокупность атомов углерода, расположенных в правильном порядке, т.е. кристалл углерода. Кислород воздуха состоит из молекул кислорода. Поэтому химическая реакция горения угля имеет вид
С + О2=СО2.
Эта реакция происходит в два этапа: сначала разрывается связь в молекуле О2, а затем два атома кислорода присоединяются к углероду. Первый этап требует затрат энергии. При обычных температурах тепловой энергии недостаточно для расщепления молекулы кислорода на два атома, как в тех случаях, когда уголь соприкасается с воздухом без горения. Но если подвести теплоту от зажженной спички или горящей щепки, то реакция начнется. На втором ее этапе при образовании СО2 выделяется больше энергии, чем требуется для расщепления О2 (рис. 1, а). Поэтому энергия, необходимая для дальнейшего расщепления О2, поставляется самим процессом горения. Таким образом, при горении угля большая часть энергии выделяется в виде теплоты, а часть энергии, высвобождаемой на втором этапе, идет на инициирование дальнейших реакций. Полезная теплота равна избытку энергии, выделяющейся